卧龙小说网> > > 。

  • asonofheav
  • 2022-01-22 05:06:05

21 世纪以来,随着计算机技术、信息技术和网络技术的快速发展,人工智能识别技术应运而生,成为一种新兴计算机技术,在各行各业、各个领域的应用范围不断扩大,为经济增长、社会发展提供重要基础保障。然而,就当前应用情况来看,计算机人工智能识别技术的应用面临一系列瓶颈问题。基于此,文章通过研究和探析计算机人工智能识别技术应用瓶颈问题,为计算机人工智能识别技术的应用和发展奠定坚实基础。

【关键词】计算机 人工智能识别技术 应用 瓶颈

作为一种自动化、智能化、科学化计算机技术,计算机人工智能识别技术通过将人类思维模式从抽象化到具体化,进行准确识别、科学判断和准确模拟,最终通过计算机程序完整体现出来。计算机人工智能识别技术被广泛运用于各个领域,与其他计算机技术相比,人工智能识别技术的应用前景更为广阔,能够为人类提供更为高效、便捷和优质服务。近年来,计算机人工智能识别技术在我国相关领域中取得一系列显着应用成效,然而由于发展时间较短,尚未形成一套完整的运行体系,整个应用过程依然面临诸多瓶颈问题。因此,本文研究具备一定的实践意义。

1、计算机人工智能识别技术的含义及类型

1.1、人工智能识别技术的含义

人工智能识别技术,实质上指的是基于计算机技术和人工智能平台所衍生出来的一种科学技术,人工智能识别技术能够对人类各种思维模式、行为方式进行准确识别和完整模拟,经过智能化、自动化,所形成的一种自动智能化机器。在实际应用过程中,计算机人工智能识别技术装置可以对相关物品信息进行扫描、识别。比如: 超市中所利用的扫描装置,就是一种人工智能识别装置,通过扫描产品上的条形码,产品的质量、单价、名称等相关信息便会完整呈现出来,售货员进行数量的录入,便可以进行总价的计算,作为计算机人工智能识别技术的一种典型应用案例[1]。此外,计算机人工智能识别技术还能够被应用于企业办公自动化、生产智能化等方面,从而有利于人们办事效率、工作水平的大幅提高。

1.2、人工智能识别技术的类型

按照人工智能化特征进行划分,我们可以将人工智能化识别技术划分为机械化识别技术和人工化识别技术两种类型。

1.2.1、机械化识别技术

机械化识别技术,顾名思义,就是通过识别无生命特征的物体信息,主要涉及到的技术有以下三种:

第一,智能卡技术。作为一种集成电路卡,与计算机系统紧密关联起来,共同完成信息数据的采集、管理、传输、加密和处理。通常情况下,智能卡识别技术被广泛运用于物品验证、车辆识别、信息跟踪等方面。

第二,条形码识别技术。一般而言,条形码识别技术可以划分为两种: 一是一维条码技术; 二是二维条码技术。二维条码技术是一维条码技术的衍生物,在一维条码技术的改进和优化之上所形成,所以二维条码技术更为先进,能够进行数据信息的采集、识别,并能够准确、即时显示出来,被广泛运用于条码扫描和信息识别等方面。

第三,射频识别技术。射频识别技术与智能卡、条形码识别技术应用原理不同,它不需要与物体进行零距离接触,只需要借助无线电磁波进行信息的采集和识别。射频识别技术主要对物品信息进行有效标识,从一定程度上可以取代传统条形码识别技术,将有可能成为物品标识管理最为有效和先进的一项技术。

1.2.2、人工化识别技术

人工化识别技术,是针对人体所设计的一项智能识别技术,主要涉及到的核心技术有以下三种:

第一,人脸识别技术。对人脸进行扫描,进而进行身份信息的识别和判断,通常所扫描的部位是人的眼睛或脸部结构。人脸识别技术通过局部放大,自动进行人脸部关键特征信息的收集、识别,通过调节亮度,提高识别结果的精准性。

第二,声音识别技术。通过对人的声音进行有效识别,以此来判断声音主体身份。声音识别技术运作原理为,从音色、音调、音质等层面,进行声音的辨别,并在系统中进行特征的记录和匹配,进而实现识别目的[2]。

第三,指纹识别技术。通过扫描人的指纹,进而进行身份的识别和判定。由于每个人与其他人的指纹并不相同,所以指纹识别技术十分先进,能够准确识别和判断个人身份信息。

2、计算机人工智能识别技术应用领域

20 世纪 60 年代之后,随着计算机技术、信息技术和网络技术的快速革新,人工智能识别技术因此得到快速发展,其应用范围和领域不断扩大,逐步发展成为各行各业、各个领域的核心技术。

2.1、应用于机器人技术领域

研究表明,机器人技术源自于 20 世纪 70 年代,成为一种专业学科。同时,机器人技术被各个领域所使用,取得一系列显着应用成效。比如: 机器人技术运用于外科手术中,机器人助手能够帮助外科手术医生进行手术,其应用范畴不断扩大。究其原因,机器人人工智能识别技术不仅能够减少组织成本性资金投入,而且有利于组织内外部风险的预防和规避。当然,尽管人工智能识别技术在机器人产业中的应用力度较大、范围较广,但是依然需要改进和完善。

2.2、应用于语音识别技术领域

语音识别,顾名思义就是通过某种特别手段和人工智能识别技术,让机器对人类的语言有一定的理解,并且能够产生识别、交互行为。长期以来,语音识别技术深受国内外学术界的高度重视。

语音识别类产品涉及面较广、服务领先,具有巨大交互优势。近年来,随着人工智能识别技术的快速发展,语音识别技术同样实现了较快发展,建立在语音识别技术之上的芯片越来越多,已然成为新时期人工智能识别与交互的核心内容。

2.3、应用于人工神经网络领域

人工神经网络简称为神经网络,是批量处理单元相互交织形成的一种特殊网络形态。神经网络基于人脑,是对人脑抽象活动的具体化、简单化和模拟化,与人脑基本功能极为相似。人工神经网络是通过对人脑活动、指令的模拟、效仿,并从中得到启发,进行批量单元信息的处理。人工神经网络中,神经元之间的相互作用便会产生信息处理过程。尽管人工神经网络并不能等同于人脑,也不能完全发挥出人脑所有作用,但是却能够通过人工智能识别技术帮助人类进行自动化、智能化事件的处理。

3、计算机人工智能识别技术的应用瓶颈

20 世纪末,以密码、密钥等安全识别技术为主的信息、数据安全保障手段被广泛运用于各行各业、各个领域之中。然而,其具备一定的易复制性、丢失性、不稳定性,所以在一定程度上严重制约和影响到信息安全技术的发展。计算机人工智能识别技术基于计算机技术之上,通过对信息数据进行采集、识别和录入,能够为人们提供便捷的操作方法[3]。然而,我国计算机人工智能识别技术发展应用时间较短,尽管取得了一系列显着成效,应用范围不断扩大,但是其依然面临巨大的应用瓶颈问题。

3.1、语音人工智能识别技术应用瓶颈

语音人工智能识别技术旨在让机器能够读懂和识别出人类语言,并按照人类的指令进行一系列操作。语音人工智能识别技术作为计算机人工智能识别技术的一项核心技术,长期以来,深受国内外学术界的高度重视。与此同时,语音人工智能识别技术被广泛应用于各行各业、各个领域,其技术和产品优势十分鲜明,在语音电话、语音通信、语音交互等方面取得显着应用成效。21 世纪以来,计算机人工智能识别类产品类型的不断增多,语音人工智能识别技术得到快速发展,以语音识别技术为载体的芯片数量日渐增多。然而,语音人工智能识别技术的发展时间较短,依然存在应用瓶颈问题,具体表现在以下三个方面:

(1) 语音识别技术有待提升。语音识别技术实际应用过程中,必须尽可能排除外界环境的干扰,比如: 外部其他噪声。唯有此,才能准确识别音色、音调、音质。尽管语音识别技术基本上实现了智能化,但是以目前的技术来讲,并无法在外部噪音的干扰下准确识别语音。如此一来,从一定程度上影响到语音识别技术的发展。因此,要想确保语音识别技术能够在外部噪音影响的情况下实现准确识别,必须采取特殊抗噪音麦克风,这对于普通用户来讲,基本上达不到该项要求。与此同时,用户在日常谈吐过程中,较为随意,具有明显的地方特色,加之语速、频率等控制影响较大,普通话不标准等问题,直接影响到语音识别设备对音色、音调、音质等的准确识别。除此之外,人们的语言受到年龄、情绪、身体素质等的影响,其音色、音调、音质随着自身及外部环境的变化而改变,直接给语音识别形成影响。因此,当前语音识别技术可靠性有待提升。

(2) 语音识别系统不健全,词汇量较少。目前,我国计算机人工语音识别系统词汇量较少,在实际运行过程中,并不能识别到所有的音色、音调和音质。倘若语音模型有一定的限制,词汇中出现一些难以识别的方言、外语,那么语音识别系统将无法在较短的时间内准确识别出语音,甚至会出现识别错误、不准等情况。基于此,随着语音识别技术的不断发展,其应用范围的进一步扩大,需要进行其词汇量的增加,尽可能准确、快速识别出更多的语音,而建模方法、搜索算法的逐步变革,使得语音识别系统不能实现智能化识别,仅仅能够识别出基础的音色、音调和音质,对于其系统、深入、全面应用来讲,依然存在较多的瓶颈问题[4]。

(3) 应用成本较高、体积较大。目前,我国计算机人工智能识别技术的应用范围不断扩大、应用领域不断增多,特别是语音识别技术的应用成效十分显着。然而,语音识别技术的应用成本依然很高,使得普通用户基本无法接受。就目前的发展情况来看,语音识别技术应用成本的降低似乎难度很大。对性能、功能要求较高的语音识别基本上无法实现,当前的条件并不成熟,无法实现规模

人工智能所引起的末世提示您:看后求收藏(卧龙小说网http://www.wolongxs.com),接着再看更方便。

好书推荐:《等我穿上小裙子你们就完蛋啦》《好感度破亿的病娇缠上我了》《无尽宇宙探索指南》《我穿越到了全是女生的世界》《我穿越到全是女孩子的世界》《星门》

目录